A bag contains 5 white balls, 6 red balls and 9

green balls. A ball is drawn at random from the

bag. Find the probability that the ball drawn is: (i) a green ball

(ii) a white or a red ball.

(iii)Neither a green ball nor a white ball Solution:

Number of white balls = 5

Number of red balls = 6

Number of green balls = 9

 \therefore Total number of balls = 5 + 6 + 9 = 20

(i) P(Green ball) = $\frac{\text{Number of Green balls}}{\text{Total number of balls}} = \frac{9}{20}$

(ii) P(White ball or Red ball) = P(White ball) + P(Red ball)

<u>Number of White balls</u> + <u>Number of Red balls</u>
Total number of balls
+ Total number of balls $=\frac{5}{20}+\frac{6}{20}$ $=\frac{11}{20}$

(iii) P(Neither Green ball nor White ball) = P(Red ball)

= Number of Red balls Total number of balls - 6 20 - 3 10

A game of numbers has cards marked with 11, 12 13,, 40. A card is drawn at random. Find the probability that the number on the card drawn is: (i) A perfect square (ii) Divisible by 7.

Solution:

Total number of outcomes = 30

(i) The perfect squares from 11 to 40 are 16, 25 and 36. So, the number of possible outcomes = 3 Hence, the probability that the number on the card drawn is a perfect square

=

	Number	of	possible	outcomes	_ <u>3</u> _	
_	Total	numb	er of	outcomes	30	
(ii) Among the given numbers, 14, 21, 28 and 35						
are divisible by 7. So, the number of possible						
outcomes = 4 Hence, the probability that the						
number on the card drawn is divisible by 7						
_ Nu	mber of po	ssible a	utoomes	4	2	
- <u> </u>	otal numbe	er of ou	itoomes	$-\frac{1}{30}-\frac{1}{15}$		

w a card from the box. What is the probability that the card drawn is:

i. a vowel

ii. a consonant

iii. none of the letters of the word median?

Solution:

Here, Total number of all possible outcomes = 16

i. a, e, i and o are the vowels.

Number of favourable outcomes = 4

∴ Required Probability =

 $\frac{\text{Number of favourable outcomes}}{\text{Total number of all possible outcomes}} = \frac{4}{16} = \frac{1}{4}$

ii. Number of consonants = 16 - 4 (vowels) = 12

Number of favourable outcomes = 12

∴ Required Probability =

 $\frac{\text{Number of favourable outcomes}}{\text{Total number of all possible outcomes}} = \frac{12}{16} = \frac{3}{4}$

iii. Median contains 6 letters.

∴ Number of favourable outcomes = 16 - 6 = 10

Required Probability =
Number of favourable outcomes

A box contains a certain number of balls. On each of 60% balls, letter A is marked. On each of 30% balls, letter B is marked and on each of remaining balls, letter C is marked. A ball is drawn from the box at random. Find the probability that the ball drawn is:

i. marked C

ii. A or B

iii. neither B nor C

Solution:

A box contains,

60% balls, letter A is marked.

30% balls, letter B is marked.

10% balls, letter C is marked.

i. Total number of all possible outcomes = 100

Number of favourable outcomes = 10

Required Probability =

 $\frac{\text{Number of favou rable outcomes}}{\text{Total number of all possible outcomes}} = \frac{10}{100} = \frac{1}{10}$

ii. The probability that the ball drawn is marked A = $\frac{\text{Number of favourable outcomes}}{\text{Total number of all possible outcomes}} = \frac{60}{100} = \frac{6}{10}$...(1)

- rest in possible duteonics 100
- ... (2)
- \therefore Required Probability = $\frac{6}{10} + \frac{3}{10} = \frac{9}{10}$
- iii. The probability that the ball drawn is neither B
- nor C
- = 1 [P(B) + P(C)] $= 1 - \left[\frac{3}{10} + \frac{1}{10}\right]$ $= 1 - \frac{4}{10}$ $= \frac{6}{10}$ $= \frac{3}{5}$

Question 38.

A box contains a certain number of balls. Some of these balls are marked A, some are marked B and the remaining are marked C. When a ball is drawn at random from the box $P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{4}$. If there are 40 balls in the box which are marked C, find the number of balls in the box.

Solution:

P(C) = 1 - [P(A) + P(B)] = $1 - \left[\frac{1}{3} + \frac{1}{4}\right] = 1 - \frac{7}{12} = \frac{5}{12}$ Probability = <u>Number of favourable outcomes</u> Given that 40 balls in the box are marked C. $\Rightarrow \frac{5}{12} = \frac{40}{\text{Total number of all possible outcomes}}$ $\Rightarrow \text{Total number of all possible outcomes} =$ $\frac{40 \times 12}{5} = 96$

 \therefore the number of balls in the box is 96.