A bag contains 5 white balls, 6 red balls and 9 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is:
(i) a green ball
(ii) a white or a red ball.
(iii)Neither a green ball nor a white ball

Solution:

Number of white balls $=5$
Number of red balls $=6$
Number of green balls $=9$
\therefore Total number of balls $=5+6+9=20$
(i) P(Green ball) $-\frac{\text { Number of Green balls }}{\text { Total number of balls }}=\frac{9}{20}$
(ii) P (White ball or Red ball) -P (White ball) +P (Red ball)

$$
\begin{aligned}
& -\frac{\text { Number of White balls }}{\text { Total number of balls }}+\frac{\text { Number of Red balls }}{\text { Total number of balls }} \\
& -\frac{5}{20}+\frac{6}{20} \\
& -\frac{11}{20}
\end{aligned}
$$

(iii) P(Neither Green ball nor White ball) $-\mathbf{P}$ (Red ball)

$$
\begin{aligned}
& -\frac{\text { Number of Red balls }}{\text { Total number of balls }} \\
& -\frac{6}{20} \\
& -\frac{3}{10}
\end{aligned}
$$

A game of numbers has cards marked witn II, IL $13, \ldots . ., 40$. A card is drawn at random. Find the probability that the number on the card drawn is: (i) A perfect square
(ii) Divisible by 7 .

Solution:

Total number of outcomes $=30$
(i) The perfect squares from 11 to 40 are 16, 25 and 36 . So, the number of possible outcomes $=3$ Hence, the probability that the number on the card drawn is a perfect square
=
$=\frac{\text { Number of possible outcomes }}{\text { Total number of outcomes }}=\frac{3}{30}$
(ii) Among the given numbers, 14, 21, 28 and 35 are divisible by 7 . So, the number of possible outcomes $=4$ Hence, the probability that the number on the card drawn is divisible by 7
$=\frac{\text { Number of possible autoomes }}{\text { Total number of outoomes }}=\frac{4}{30}=\frac{2}{15}$
probability that the card drawn is:
i. a vowel
ii. a consonant
iii. none of the letters of the word median?

Solution:
Here, Total number of all possible outcomes = 16
i. a, e, i and o are the vowels.

Number of favourable outcomes $=4$
\therefore Required Probability $=$
$\frac{\text { Number of favourable outcomes }}{\text { Total number of all possible outcomes }}=\frac{4}{16}=\frac{1}{4}$
ii. Number of consonants $=16-4$ (vowels) $=12$
\therefore Number of favourable outcomes $=12$
\therefore Required Probability $=$
$\frac{\text { Number of favourable outcomes }}{\text { tal number of all possible outcomes }}=\frac{12}{16}=\frac{3}{4}$
iii. Median contains 6 letters.
\therefore Number of favourable outcomes $=16-6=10$
\therefore Required Probability $=$
Number of f

A DOX contains a certain number of balls. On each of 60% balls, letter A is marked. On each of 30% balls, letter B is marked and on each of remaining balls, letter C is marked. A ball is drawn from the box at random. Find the probability that the ball drawn is:
i. marked C
ii. A or B
iii. neither B nor C

Solution:
A box contains,
60\% balls, letter A is marked.
30% balls, letter B is marked.
10% balls, letter C is marked.
i. Total number of all possible outcomes $=100$

Number of favourable outcomes $=10$
\therefore Required Probability =
$\frac{\text { Number of favou rable outcomes }}{\text { Total number of all possible outcomes }}=\frac{10}{100}=\frac{1}{10}$
ii. The probability that the ball drawn is marked $\mathrm{A}=$
$\frac{\text { Number of favourable outcomes }}{\text { Total number of all possible outcomes }}=\frac{60}{100}=\frac{6}{10}$... (1)
\ldots (2)
\therefore Required Probability $=\frac{6}{10}+\frac{3}{10}=\frac{9}{10}$
iii. The probability that the ball drawn is neither B nor C
$=1-[P(B)+P(C)]$
$=1-\left[\frac{3}{10}+\frac{1}{10}\right]$
$=1-\frac{4}{10}$
$=\frac{6}{10}$
$=\frac{3}{5}$

Question 38.

A box contains a certain number of balls. Some of these balls are marked A, some are marked B and the remaining are marked C . When a ball is drawn at random from the box $P(A)=\frac{1}{3}$ and $P(B)=\frac{1}{4}$. If there are 40 balls in the box which are marked C , find the number of balls in the box.

Solution:
$P(C)=1-[P(A)+P(B)]=$
$1-\left[\frac{1}{3}+\frac{1}{4}\right]=1-\frac{7}{12}=\frac{5}{12}$
Probability $=\frac{\text { Number of favourable outcomes }}{\text { Total number of all possible outcomes }}$
Given that 40 balls in the box are marked C .
$\Rightarrow \frac{5}{12}=$
40
Total number of all possible outcomes
\Rightarrow Total number of all possible outcomes = $\frac{40 \times 12}{5}=96$
\therefore the number of balls in the box is 96 .

