1. Using appropriate properties find:

(i)
$$-\frac{1}{2} \times \frac{3}{5} + \frac{3}{2} - \frac{3}{5} \times \frac{5}{4}$$

(ii)
$$\frac{4}{7} \times \left(-\frac{1}{5}\right) + \frac{2}{7} \times \frac{3}{5} - \frac{3}{2} \times \frac{4}{7}$$

(iii)
$$\frac{1}{5} \times \left(-\frac{3}{2}\right) + \frac{4}{5} \times \left(-\frac{2}{7}\right) - \frac{1}{6} \times \left(-\frac{2}{7}\right)$$

2. Write the additive inverse of:

(i)
$$\frac{5}{7}$$

(ii)
$$\frac{-4}{11}$$

(i)
$$\frac{5}{7}$$
 _____ (ii) $\frac{-4}{11}$ _____ (iii) $\frac{11}{-15}$ _____

(iv)
$$\frac{2}{-13}$$
 _____ (v) $\frac{-16}{7}$ _____

(v)
$$\frac{-16}{7}$$

(vi)
$$\frac{21}{-9}$$

1. Write the multiplicative inverse of:

(i) $\frac{-4}{7}$ (ii) $\frac{21}{5}$ (iii) $\frac{9}{-11}$

(iv) $\frac{5}{6} \times \left(\frac{-3}{8}\right)$

 $(v) -7 \times \frac{5}{14}$

2. Name the property used:

(i) $\frac{2}{5} \times \left(-\frac{1}{2}\right) = -\frac{1}{5}$, which is a rational number_____

(ii) $\frac{-4}{Q} \times 1 = \frac{-4}{Q} = 1 \times \left(-\frac{4}{Q}\right)$

(iii) $\frac{5}{12} \times \left(-\frac{1}{7}\right) = -\frac{1}{7} \times \frac{5}{12}$

(iv) $7 \times \frac{1}{7} = \frac{1}{7} \times 7 = 1$

 $(v) \left\lceil \frac{4}{5} \times \left(-\frac{3}{5} \right) \right\rceil \times \frac{1}{2} = \frac{4}{5} \times \left\lceil \left(-\frac{3}{5} \right) \times \frac{1}{2} \right\rceil$

(vi) $\frac{1}{2} \times \left| \frac{1}{5} + \left(-\frac{1}{7} \right) \right| = \frac{1}{2} \times \frac{1}{5} + \frac{1}{2} \times \left(-\frac{1}{7} \right)$

3. For $x = -\frac{13}{25}$, verify that (-x) = x.

- 1. How many rational numbers are there whose reciprocals do not exist?
- 2. Multiply $\frac{2}{15}$ by the reciprocal of $\frac{7}{5}$.
- 3. Divide -1 by the reciprocal of $\frac{5}{-11}$.
- 4. Write the rational number which is equal to its additive inverse.
- 5. Write all the rational numbers that are equal to their reciprocals.
- **6.** If we exclude 0, then the collection of all other rational numbers is closed under division. Is it true?
- 7. Is subtraction associative for rational numbers?
- 8. Negative of the negative of a rational number is the number itself. Is it true?
- **9.** The reciprocal of a positive rational number is _____ and the reciprocal of a negative rational number is _____.

- 1. Represent the following rational numbers on the number line.
 - (i) $\frac{1}{4}$
 - (ii) $\frac{12}{5}$
 - (iii) $-\frac{5}{8}$
 - (iv) $-\frac{11}{3}$
- 2. Write the rational number for each point labelled with a letter.
- 3. List the integers which lie between -2 and 2.
- **4.** How many rational numbers are there between −2 and 2?
- **5.** Write 3 rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$.

1. Find 5 rational numbers between -3 and -2.

2. Find 10 rational numbers between $-\frac{4}{5}$ and $-\frac{3}{5}$

3. If *x* and *y* are two rational numbers, then ______ is a rational number between *x* and *y*.

4. Write 4 rational numbers greater than $-\frac{1}{5}$.

5. Find 6 rational numbers between -8 and -7.

6. Find 10 rational numbers between $-\frac{1}{3}$ and 3.